Abstract
The slow redox kinetics and shuttling behavior of the intermediate lithium polysulfides constrain the further development of lithium-sulfur (Li-S) electrochemistry. A yolk-shell In2S3@void@carbon hybrid engineered to host the sulfur for Li-S batteries is prepared by using a multi-layered assembly method. The In2S3/electrolyte interface acted as powerful adsorption and activation sites for soluble polysulfides, which is demonstrated using density functional theory (DFT) calculations. Moreover, the carbon shell provides redundancy for volume-changes during the cycles. The results indicate that yolk-shell In2S3@S@C hybrid cathode shows good reversibility and rate capability, which preserves 563.6 mA h g-1 after 500 cycles at 0.5 C, indicating the potential for developing high-performance battery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.