Abstract

The discovery of the Na(+)-dependent allosteric regulation in serine proteases makes it possible to control catalytic activity and specificity in this class of enzymes in a way never considered before. We demonstrate that rational site-directed mutagenesis of residues controlling Na+ binding can profoundly after the properties of a serine protease. By suppressing Na+ binding to thrombin, we shift the balance between procoagulant and anticoagulant activities of the enzyme. Those mutants, compared to wild-type, have reduced specificity toward fibrinogen, but enhanced or slightly reduced specificity toward protein C. Because this engineering strategy targets a fundamental regulatory mechanism, it is amenable of extension to other enzymes of biological and pharmacological importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call