Abstract

With the aim of rationally devising a refined and potent HIV-1 blocker, the cDNA of CCL5 5p12 5m, an extremely potent CCR5 antagonist, was fused to that of C37, a gp41-targeted fusion inhibitor. The resulting CCL5 5p12 5m-C37 fusion protein was expressed in E. coli and proved to be capable of inhibiting R5 HIV-1 strains with low to sub-picomolar IC50, maintaining its antagonism toward CCR5. In addition, CCL5 5p12 5m-C37 inhibits R5/X4 and X4 HIV-1 strains in the picomolar concentration range. The combination of CCL5 5p12 5m-C37 with tenofovir (TDF) exhibited a synergic effect, promoting this antiviral cocktail. Interestingly, a CCR5-targeted combination of maraviroc (MVC) with CCL5 5p12 5m-C37 led to a synergic effect that could be explained by an extensive engagement of different CCR5 conformational populations. Within the mechanism of HIV-1 entry, the CCL5 5p12 5m-C37 chimera may fit as a powerful blocker in several instances. In its possible consideration for systemic therapy or pre-exposure prophylaxis, this protein design represents an interesting lead in the combat of HIV-1 infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call