Abstract

Type II L-asparaginase (ASNase) has been approved by the FDA for treating acute lymphoid leukemia (ALL), but its therapeutic effect is limited by low catalytic efficiency and L-glutaminase (L-Gln) activity. This study utilized free energy based molecular dynamics calculations to identify residues associated with substrate binding in Bacillus licheniformis L-asparaginase II (BLASNase) with high catalytical activity. After saturation and combination mutagenesis, the mutant LGT (74 L/75G/111 T) with intensively reduced l-glutamine catalytic activity was generated. The l-glutamine/L-asparagine activity (L-Gln/L-Asn) of LGT was only 6.6 % of parent BLASNase, whereas the L-asparagine (L-Asn) activity was preserved >90 %. Furthermore, structural comparison and molecular dynamics calculations indicated that the mutant LGT had reduced binding ability and affinity towards l-glutamine. To evaluate its effect on acute leukemic cells, LGT was supplied in treating MOLT-4 cells. The experimental results demonstrated that LGT was more cytotoxic and promoted apoptosis compared with commercial Escherichia coli ASNase. Overall, our findings firstly provide insights into reducing l-glutamine activity without impacting L-asparagine activity for BLASNase to possess remarkable potential for anti-leukemia therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.