Abstract

For the past three decades rationale drug design (RDD) has been developing as an innovative, rapid and successful way to discover new drug candidates. Many strategies have been followed and several targets with diverse structures and different biological roles have been investigated. Despite the variety of computational tools available, one can broadly divide them into two major classes that can be adopted either separately or in combination. The first class involves structure-based drug design, when the target's 3-dimensional structure is available or it can be computationally generated using homology modeling. On the other hand, when only a set of active molecules is available, and the structure of the target is unknown, ligand-based drug design tools are usually used. This review describes some recent advances in rational drug design, summarizes a number of their practical applications, and discusses both the advantages and shortcomings of the various techniques used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.