Abstract

For better investigating the complicated relationships between H2S and SO2, simultaneously detecting and visualizing them with good selectivity is crucial. However, most sensing mechanisms for H2S and SO2 probes are based on the addition reactions with the double bonds, which have no selectivity. In this work, by introducing an active triple bond into 4-dicyanovinyl-7-diethylamino-coumarin, we construct two unique sensors for not only distinguishing between H2S and SO2 but also sensing H2S and SO2 in a dual-ratiometric manner. Moreover, the modified sensor was successfully applied in living cells and zebrafish for discriminating H2S and SO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.