Abstract

Biotin-(strept)avidin complex is widely used in biotechnology because of its extremely high binding constant, but there is no report describing spatiotemporally controlled formation of the complex in live cells. Here, based on X-ray crystal structure analysis and calorimetric data, we designed and synthesized photoreleasable biotins, which show greatly reduced affinity for (strept)avidin, but recover native affinity after UV irradiation. For application at the cell surface, we introduced an amine-reactive moiety into these "caged" biotin molecules. Specific fluorescence imaging of live cells that had been labeled with these agents and then UV-irradiated, was accomplished by addition of streptavidin conjugated with a fluorophore. We also demonstrated the applicability of these compounds for UV-irradiated-cell-specific drug delivery by using caged-biotin-labeled cells, a prodrug, and streptavidin conjugated with a prodrug-activating enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.