Abstract

Metal-organic frameworks (MOFs), with biocompatible and bio-friendly properties, exhibit intriguing potential for the drug delivery system and imaging-guided synergistic cancer theranostics. Even though tremendous attention has been attracted on MOFs-based therapeutics, which play a crucial role in therapeutic drugs, gene, and biomedical agents delivery of cancer therapy, they are often explored as simple nanocarriers without further "intelligent" functions. Herein, Fe-doped MOFs with CoP nanoparticles loading were rationally designed and synthesized for photothermal enhanced reactive oxygen species (ROS)-mediated treatment. Fe-ZIFs@CoP could generate efficient ROS through the Fenton reaction while depleting glutathione for amplifying oxidative stress. Particularly, due to the photothermal effect of Fe-ZIFs@CoP, the hyperthermia generated by as-synthesized Fe-ZIFs@CoP facilitated the advanced performance of the Fenton effect for a high amount of ROS generation. The promising "all-in-one" synergistic MOFs platform herein reported provides some prospects for future directions in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.