Abstract

Metals of interest for biomedical applications often need to be complexed and associated in a stable manner with a targeting agent before use. Whereas the fundamentals of most transition-metal complexation processes have been thoroughly studied, the complexation of Zr(IV) has been somewhat neglected. This metal has received growing attention in recent years, especially in nuclear medicine, with the use of (89) Zr, which a β(+) -emitter with near ideal characteristics for cancer imaging. However, the best chelating agent known for this radionuclide is the trishydroxamate desferrioxamine B (DFB), the Zr(IV) complex of which exhibits suboptimal stability, resulting in the progressive release of (89) Zr in vivo. Based on a recent report demonstrating the higher thermodynamic stability of the tetrahydroxamate complexes of Zr(IV) compared with the trishydroxamate complexes analogues to DFB, we designed a series of tetrahydroxamic acids of varying geometries for improved complexation of this metal. Three macrocycles differing in their cavity size (28 to 36-membered rings) were synthesized by using a ring-closing metathesis strategy, as well as their acyclic analogues. A solution study with (89) Zr showed the complexation to be more effective with increasing cavity size. Evaluation of the kinetic inertness of these new complexes in ethylenediaminetetraacetic acid (EDTA) solution showed significantly improved stabilities of the larger chelates compared with (89) Zr-DFB, whereas the smaller complexes suffered from insufficient stabilities. These results were rationalized by a quantum chemical study. The lower stability of the smaller chelates was attributed to ring strain, whereas the better stability of the larger cyclic complexes was explained by the macrocyclic effect and by the structural rigidity. Overall, these new chelating agents open new perspectives for the safe and efficient use of (89) Zr in nuclear imaging, with the best chelators providing dramatically improved stabilities compared with the reference DFB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.