Abstract
The photo-oxidation of amyloid-β (Aβ) protein catalyzed by Aβ-targeting photosensitizers shows high potential in treating Alzheimer's disease (AD). Herein, we report the first example of photosensitizers based on the rofecoxib scaffold, in which rational introduction of the electron-absorbing pyridinium/quinolinium moiety to the skeleton of rofecoxib could not only extend the absorption and emission wavelengths but also increase the efficiency of singlet oxygen (1O2) production. The emission wavelengths of R-S-MP, R-S-MC, and R-S-MQ are red-shifted to 860 nm, which might benefit the NIR imaging of Aβ aggregates with low photoscattering and autofluorescence. In addition, R-S-MP can identify Aβ plaques in brain sections of AD mice and detect abnormal viscosity environments, facilitating the pathological study of Alzheimer's disease. Most importantly, upon complexation with Aβ plaques, R-S-MP and R-S-MC could produce high singlet oxygen (1O2) under light irradiation, which can achieve the specific photo-oxidation of Aβ protein. Our optimized photosensitizers could change the conformation of β-rich Aβ protein and enhance its clearance through the lysosomal pathway, leading to the reduction of the Aβ-mediated neurotoxicity. All these excellent characteristics of our dual-functional photosensitizers for simultaneous imaging and photo-oxidation of Aβ aggregates suggest their promising prospects in pathological research in AD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.