Abstract

In this paper, we describe the unification and extension of multiple kinematic theories on the advection of colloidal particles through periodic obstacle lattices of arbitrary geometry and infinitesimally small obstacle size. We focus specifically on the particle displacement lateral to the flow direction (termed "deterministic lateral displacement") and the particle-obstacle interaction frequency, and develop methods for describing these as a function of particle size and lattice parameters for arbitrary lattice geometries. We then demonstrate design algorithms for microfluidic devices consisting of chained obstacle lattices of this type that approximate any lateral displacement function of size to arbitrary accuracy with respect to multiple optimization metrics, prove their validity mathematically, and compare the generated results favorably to designs in the literature with respect to metrics such as accuracy, device size, and complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call