Abstract

Metabolic engineering of Escherichia coli was performed to construct a 100% rationally engineered strain capable of overproducing L-isoleucine, an important branched-chain amino acid. The thrABC (encoding L-threonine biosynthetic enzymes), ilvA (encoding feedback-resistant threonine dehydratase), ilvIH (encoding feedback-resistant acetohydroxy acid synthase III), and ygaZH (encoding branched-chain amino acid exporter) genes were amplified by plasmid-based overexpression. The ilvCED (encoding L-isoleucine biosynthetic enzymes) and lrp (encoding global regulator Lrp) genes were also amplified by chromosomal promoter replacement in order to further increase the flux toward L-isoleucine. The final engineered E. coli strain was able to produce 9.46 g/L of L-isoleucine with a yield of 0.14 g/g of glucose by fed-batch culture. The overall design principles described here for the production of highly regulated product should be useful in designing strains for the production of other similar bioproducts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.