Abstract

The development of modern technologies has acclimatized biosensors to complicated applicable scenarios with integrated properties as a whole instead of the pursuit of a single-point breakthrough. Here, we targeted a few concerns in the development of enzyme-based biosensors, including stability, analyte enrichment, and signal transduction, and developed a general biosensing model utilizing enzymes, aggregation-induced emission (AIE) luminogens, and stimuli-responsive framework materials as the units. We propose such proof-of-concept of glucose biosensors by coencapsulating glucose oxidase and AIE-type gold nanoclusters into acid-sensitive zeolite imidazolate framework (ZIF)-8 nanocrystals. The acid-activated degradation of ZIF-8 bridges the molecular signals produced by the enzyme-catalytic reaction of glucose and the photon signals generated by ZIF-8-induced AIE effects of gold nanoclusters, resulting in the "turn-off" model nanoprobes for glucose detection with high selectivity. After embedding the nanoprobes into hollow-out tapes, the formed paper biosensors can conveniently detect glucose with the help of a smartphone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.