Abstract

A facile, one-step hydrothermal method was employed to synthesize two kinds of WO3 nanostructures. By using different kinds of sylvine, tungsten trioxide (WO3) with different morphologies of microflowers and nanowires was obtained, respectively. The discharge capacities for microflowers and nanowires are 107 and 146 mAh g−1 after 180 cycles, and their corresponding capacity retentions after the first cycle are 72 and 85 %, respectively. Even at a high current density of 1,600 mAh g−1, the discharge capacities of WO3 microflowers and nanowires are as high as 433 and 557 mAh g−1 after 40 cycles, in which the current densities were increased stepwise. It is worth mentioned that the rate capability of the nanowires is superior to that of the microflowers. However, the cycle performance of the microflowers is better than nanowires, revealing that the morphology and structure of the as-synthesized WO3 products can exert great influence on the electrochemical performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.