Abstract

On the basis of first-principles calculations, we report the design of three two-dimensional (2D) binary honeycomb-kagome polymers composed of B- and N-centered heterotriangulenes with a periodically alternate arrangement as in hexagonal boron nitride. The 2D binary polymers with donor-acceptor characteristics are semiconductors with a direct band gap of 1.98-2.28 eV. The enhanced in-plane electron conjugation contributes to high charge carrier mobilities for both electrons and holes, about 6.70 and 0.24 × 103 cm2 V-1 s-1, respectively, for the 2D binary polymer with carbonyl bridges (2D CTPAB). With appropriate band edge alignment to match the water redox potentials and pronounced light adsorption for the ultraviolet and visible range of spectra, 2D CTPAB is predicted to be an effective photocatalyst/photoelectrocatalyst to promote overall water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.