Abstract

Birefringent materials are widely used in various advanced optical systems, owing to their vital role in creating and controlling polarized light. Currently, Sn2+-based compounds containing stereochemically active lone-pair (SCALP) cations are extensively investigated and considered as one class of promising birefringent materials. To solve the problem of relatively narrow bandgap of Sn2+-based compounds, alkali metals and multiple halogens are introduced to widen the bandgap during the research. Based on this strategy, four new Sn2+-based halides, A2Sn2F5Cl and ASnFCl2 (A = Rb and Cs), with large birefringence, short ultraviolet (UV) cutoff edge, and wide transparent rangeare successfully found. The birefringences of A2Sn2F5Cl (A = Rb and Cs) are 0.31 and 0.28 at 532nm, respectively, which are among the largest in Sn-based halide family. Remarkably, A2Sn2F5Cl possess relatively shorter UV cutoff edge (<300nm) and broad infrared (IR) transparent range (up to 16.6µm), so they can become promising candidates as birefringent materials applied in both UV and IR regions. In addition, a comprehensive analysis on crystal structures and structure-property relationship of metal Sn2+-based halides is performed to fully understand this family. Therefore, this work provides insights into designing birefringent materials with balanced optical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.