Abstract
Phosphorescent metal complexes find widespread application in organic light-emitting diodes (OLEDs), with iridium(III) complexes being particularly favored for their superior performance. Owing to the flexible modifications of both main and auxiliary ligands, the photophysical properties of iridium(III) complexes can be finely tuned. In this study, two red neutral iridium(III) complexes, designated as Ir1 and Ir2, are successfully synthesized and characterized. Various auxiliary ligands including acetylacetone and 2-picolinic acid are employed in combination with 1-(6-methoxynaphthalene-2-yl)isoquinoline as the cyclometalating ligand. Both complexes exhibit red emission, with Ir1 emitting at 631 nm and Ir2 at 615 nm. Furthermore, they demonstrated good solubility in common organic solvents, facilitating device fabrication via solution methods. Electroluminescent (EL) devices based on complexes Ir1 and Ir2 are further prepared using spin-coating method, achieving maximum external quantum efficiencies (EQEs) of 3.30 % and 4.52 %, respectively, and both devices exhibited bright red EL with CIE coordinates of (0.68, 0.32) and (0.66, 0.34), which were very close to the standard red coordinates of (0.67, 0.33).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.