Abstract

Precise in vivo tracking of hydrogen peroxide is still challenging due to its dynamic complexity and intrinsic background interference. Herein, we describe a rational design strategy to construct asymmetric aza-boron-dipyrromethane derivative (BODIPY)-based ratiometric probes for in vivo tracking H2O2, which are composed of a near-infrared aza-BODIPY core, active targeting group, and H2O2-specific recognition unit. We take advantage of two terminal functionalized conjunctions in the bis-condensed aza-BODIPY by rationally introducing carbonyl group as an electron-deficiency linker for regulating intramolecular charge transfer-induced wavelength shift and by attaching hydrophilic polyethylene glycol-biotin segment as the active targeting moiety. The probe BP5-NB-OB features several striking characteristics: (i) ratiometric near infrared response in both absorption and emission spectra; (ii) active targeting ability (biotin receptor-mediated endocytosis) with excellent biocompatibility; and (iii) in vivo tracking of endogenous H2O2. It was demonstrated that the probe BP5-NB-OB was successfully utilized for tracking endogenous H2O2 in living cells and tumor-bearing mice, providing opportunities to insight into H2O2 related diseases for clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.