Abstract

Described herein is the rational design of irreversible inhibitors of human erythrocyte purine nucleoside phosphorylase (PNPase). Inhibitor design started with the observation that the amino group of 8-aminoquinazolin-4(3H)-one interacts with enzyme-bound phosphate. This observation correctly predicted that the 5,8-dione (quinone) and 5,8-dihydroxy (hydroquinone) derivatives of quinazolin-4(3H)-ones would enter the active site. The amine-phosphate interaction also served to confirm that a quinazolin-4(3H)-one binds in the PNPase active sites like a purine substrate. From models of the PNPase active site it was possible to design quinazoline-based quinones that undergo a reductive-addition reaction with an active-site glutamate residue. The best inhibitor studied, 2-(chloromethyl)quinazoline-4,5,8(3H)-trione, rapidly inactivates PNPase by a first-order process with an inhibitor to enzyme stoichiometry of 150. The active-site hydroquinone adduct of this inhibitor eliminates a leaving group to afford a quinone methide species positioned to alkylate another active-site glutamate residue. Thus, this inhibitor is designed to cross-link the PNPase active site by reductive addition followed by the generation of an alkylating quinone methide species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.