Abstract

Pseudozyma antarctica lipase B (CALB) shows activity in the acrylation of hydroxypropylcarbamate, a racemic mixture of enantiomers of primary and secondary alcohols. However, full conversion is hampered by the slowly reacting S enantiomer of the secondary alcohol. The same is true for a wide range of secondary alcohols, for example, octan-2- and -3-ol. In order to get high conversion in these reactions in a short time, the stereospecificity pocket of CALB was redesigned by using predictions from molecular modeling. Positions 278, 104, and 47 were targeted, and a library for two-site saturation mutagenesis at positions 104 and 278 was constructed. The library was then screened for hydrolysis of acrylated hydroxypropylcarbamates. The best mutants L278A, L278V, L278A/W104F, and L278A/W104F/S47A showed an increased conversion in hydrolysis and transesterification of more than 30 %. While the wild-type showed only 73 % conversion in the acrylation of hydroxypropylcarbamate after 6 h, 97 % conversion was achieved by L278A in this time. Besides this, L278A/W104F reached >96 % conversion in the acrylation of octan-2- and -3-ol within 48 h and showed a significant decrease in stereoselectivity, while the wild-type reached only 68 and 59 % conversion, respectively. Thus the new biocatalysts can be used for efficient transformation of racemic alcohols and esters with high activity when the high stereoselectivity of the wild-type hampers complete conversion of racemic substrates in a short time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call