Abstract

An ideal wound dressing should have excellent antimicrobial properties and provide a suitable microenvironment for regenerating damaged skin tissue. In this study, we utilized sericin to biosynthesize silver nanoparticles in situ and introduced curcumin to obtain Sericin-AgNPs/Curcumin (Se-Ag/Cur) antimicrobial agent. The hybrid antimicrobial agent was then encapsulated in a physically double cross-linking 3D structure network (Sodium alginate-Chitosan, SC) to obtain the SC/Se-Ag/Cur composite sponge. The 3D structural networks were constructed through electrostatic interactions between sodium alginate and chitosan and ionic interactions between sodium alginate and calcium ions. The prepared composite sponges have excellent hygroscopicity (contact angle 51.3° ± 5.6°), moisture retention ability, porosity (67.32 % ± 3.37 %), and mechanical properties (>0.7 MPa) and exhibit good antibacterial ability against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). In addition, in vivo experiments have shown that the composite sponge promotes epithelial regeneration and collagen deposition in wounds infected with S. aureus or P. aeruginosa. Tissue immunofluorescence staining analysis confirmed that the SC/Se-Ag/Cur complex sponge stimulated upregulated expression of CD31 to promote angiogenesis while downregulating TNF-α expression to reduce inflammation. These advantages make it an ideal candidate for infectious wound repair materials, providing an effective repair strategy for clinical skin trauma infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.