Abstract
A series of peptide derivatives based on the transition-state mimetic concept has been designed that inhibit the proteinase from the human immunodeficiency virus (HIV). The more active compounds inhibit both HIV-1 and HIV-2 proteinases in the nanomolar range with little effect at 10 micromolar against the structurally related human aspartic proteinases. Proteolytic cleavage of the HIV-1 gag polyprotein (p55) to the viral structural protein p24 was inhibited in chronically infected CEM cells. Antiviral activity was observed in the nanomolar range (with one compound active below 10 nanomolar) in three different cell systems, as assessed by p24 antigen and syncytium formation. Cytotoxicity was not detected at 10 and 5 micromolar in C8166 and JM cells, respectively, indicating a high therapeutic index for this new class of HIV proteinase inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.