Abstract

Due to the fact that natural DNA may lack sufficient conductance for direct application in molecular electronics, a novel design of outer‐expanded purine analogues was proposed by incorporating an aromatic ring at the N7‐C8 site into natural G and A bases from the outside. The effect of the outer‐expansion modification on electronic properties of DNA was investigated by density functional theory and molecular dynamics. The analyses revealed that these purine analogues not only preserve the same sizes of natural purine bases, thus avoiding distortions of DNA skeleton induced by the normal ring‐inner‐expansion modification, but also keep the selectivity of pairing with their natural counterpart C and T bases. More importantly, their electronic properties are enhanced, indicated by the narrowed HOMO–LUMO gaps, the lowered ionization potentials and the improved ultraviolet absorption spectra. This work may provide helpful information for designing of artificial bases as promising building blocks of biomolecular nanowires. © 2014 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.