Abstract

Tin monosulfide (SnS), which is composed of earth-abundant elements, holds promise as useful high-performance solar absorber and thermoelectric material. In addition to the ground-state Pnma phase, a series of metastable phases in different crystalline structures have been reported experimentally or theoretically, yet the phase stability diagrams remain elusive. In this article, we provide a comprehensive materials design study of new phases of SnS using first-principles global optimization structure search calculations. We find that the two-dimensional layered phases are generally more energetically favored than the three-dimensional connected phases. In addition, we discover several new phases with comparable energetics. Four lower-energy phases show clear phonon stabilities evidenced by an absence of imaginary modes. The electronic band structures, carrier transport properties, and absorption spectra of the newly discovered phases are investigated and discussed toward potential applications for solar cells and thermoelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.