Abstract

AbstractHigh‐energy‐density Li–S batteries are considered one of the next‐generation energy storage systems, but the uncontrolled Li‐dendrite growth in Li metal anodes and the shuttling of polysulfides in S cathode severely impede the commercial development of Li–S batteries. Herein, a conductive composite architecture that is made up of bio‐derived N‐doped porous carbon fiber bundles (N‐PCFs) with co‐imbedded cobalt and niobium carbide nanoparticles is employed as a multifunctional integrated host for simultaneously addressing the challenges in both Li anodes and S cathodes. The implantation of Co and NbC nanoparticles bestows the N‐PCFs matrix with synergistically enhanced degree of graphitization, electrical conductivity, hierarchical porosity, and surface polarization. Theoretical calculations and experimental results show that NbC with specific lithiophilic and sulfiphilic features can synchronously regulate the Li and S electrochemistry by realizing homogeneous lithium deposition with suppressed Li‐dendrite growth and exerting catalytic effects for promoting the polysulfide conversion together with fast Li2S nucleation. Hence, the assembled Li–S full batteries exhibit a superb rate capability (704 mAh g−1 at 5 C) and cycling life (≈82.3% capacity retention after 500 cycles) at a sulfur loading over 3.0 mg cm−2, as well as high reversible areal capacity (>6.0 mAh cm−2) even at a higher sulfur loading of 6.7 mg cm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.