Abstract

Based on the first principle, this paper uses the generalised gradient approximation density functional theory and slab model to investigate the dissociation of methane (CH4→CH3 + H) on the surfaces of Co group (Co, Rh, Ir) and Ni group (Ni, Pd, Pt), and investigate the influence of PtIr(100), PdRh(100) and PtPd(100) on methane decomposition. From the calculated activation energies of methane dissociation on single metal surfaces and alloy surfaces,we find that Pt and Ir are better catalysts for methane dissociation in the single metals studied. In addition, methane dissociation (CH4→CH3 + H) on PtIr(100) and PdRh(100) surfaces are easier than that on single metal surfaces(Co, Rh, Ir, Ni, Pd, Pt).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.