Abstract
Although Zn(2+) ions are involved in large numbers of physiopathological processes, non-invasive detection of Zn(2+) ions in opaque biological samples remains a huge challenge. Here, we developed a novel zinc-responsive hyperpolarized (HP) (129)Xe-based NMR molecular sensor. This HP (129)Xe-based NMR molecular sensor was synthesized by attaching 2-(diphenylphosphino) benzenamine as ligand for zinc ions to the xenon-binding supramolecular cage, cryptophane. The (129)Xe NMR spectroscopy of such molecular sensor was shifted up to 6.4 ppm in the presence of Zn(2+) ions, which was nearly four times larger than that of the reported similar sensor. The application of the sensor would benefit low concentration detection by using indirect NMR/MRI method. The response exhibited high sensitivity and selectivity as discriminated from other six potentially competing metal ions. The application of this sensor in the analysis of zinc ions in the rat serum samples was also evaluated. The strategy is generally applicable in developing sensitive and selective sensors for quantitative determination of zinc ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.