Abstract

With the further exploitation of renewable energy sources, electrochemical hydrogen evolution reaction (HER) is considered a key technology to solve environmental problems and achieve global carbon neutrality. Currently, alkaline water electrolyzers (AWEs) have been revitalized as a traditional electrolytic water production industry, yet they face great challenges in achieving new technological breakthroughs due to the catalytic properties of electrode materials. In alkaline media, besides the slow kinetics of oxygen evolution reaction, the sluggish HER needing water dissociation and the mass transfer problems at high current densities are among the major factors limiting the development of alkaline water electrolysis for industrial applications. Therefore, it is of great importance to design HER electrocatalysts with high activity and stability at high current densities (>500 mA cm−2) for industrial applications at the “Research and Development level” (R&D level). Herein, a brief overview of the development of AWEs at the industrial scale is presented, and some mainstream recognized catalysis mechanisms for HER in alkaline electrolytes are summarized. Based on the requirements of industrial application and theoretical guidance, the activation strategies of HER electrocatalysts are also summarized. This review will propose new insights into the future development of alkaline water electrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.