Abstract
Engineering multicomponent active materials as an advanced electrode with the rational designed core-shell structure is an effective way to enhance the electrochemical performances for supercapacitors. Herein, three-dimensional self-supported hierarchical CoMoO4@CoS core-shell heterostructures supported on reduced graphene oxide/Ni foam have been rationally designed and prepared via a facile approach. The unique structure and the synergistic effects between two different materials, as well as excellent electronic conductivity of the reduced graphene oxide, contribute to the increased electrochemically active site and enhanced capacitance. The core-shell CoMoO4@CoS composite displays the superior specific capacitance of 3380.3 F g−1 (1 A g−1) in the three-electrode system and 81.1% retention of the initial capacitance even after 6000 cycles. Moreover, an asymmetric device was successfully prepared using CoMoO4@CoS and activated carbon as positive/negative electrodes. It is worth mentioning that the device delivered the high energy density of 59.2 W h kg−1 at the power density of 799.8 W kg−1 and the excellent cycle performance (about 91.5% capacitance retention over 6000 cycles). These results indicate that the core-shell CoMoO4@CoS composites offers the novelty strategy for preparation of electrodes for energy conversion and storage devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.