Abstract

The properties and modes of recognition of physiological DNAs associated with the four natural nucleobases might be extended, in principle, by the design of non-natural nucleobase derivatives. The goal is an expansion of the genetic alphabet, with the possible outcome of producing new DNAs with improved physical or biological properties. In this work, a new series of hetero-ring-expanded guanine analogs are proposed, and their relevant structural characteristics and electronic properties are determined by density functional theory. The stabilities of the decamer DNA duplexes (dn.dC)10 (where n represents the corresponding expanded guanine analog designed here) are also examined, using molecular dynamics. The simulations show that the designed motifs can form stable DNA-like structures. We determined the pairing energies for the Watson-Crick (WC) hydrogen-bonded dimers between the expanded G-analogs and the natural C, and found that the pairing energies are close to those of the natural GC pair. The calculated adiabatic ionization potentials (IPs) of the size-expanded guanine analogs and their base pairs, and the corresponding vertical ionization potentials, show that some are distinctly smaller than the corresponding natural versions. The HOMO-LUMO energy gaps for most of the size-expanded guanine analogs and their WC base pairs are considerably lower than those of the corresponding natural base and base pairs. Thus, the expanded G bases may be considered as DNA genetic motifs, and they may serve as building blocks for potential biological applications and the development of molecular electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.