Abstract

The interfacial region has a critical role in determining the gas separation properties of nanofiller-containing membranes. However, the effects of surface chemistry of nanofillers on gas separation performance of thin film nanocomposite (TFN) membranes, prepared by the interfacial polymerization method, have been rarely studied in depth. In this work, pristine and three differently surface-modified halloysite nanotubes (HNTs), by non- (SHNT), moderately (ASHNT), or highly CO2-philic (SFHNT) agents, are embedded in the polyamide top layer of thin film nanocomposite (TFN) membranes for CO2/N2 and CO2/CH4 separations. Trimethoxyoctyl silane, 3-(2-aminoethylaminopropyl)trimethoxysilane, and poly(styrenesulfonic acid) are used as modifying agents to quantitatively investigate the effects of interfacial interactions between the polyamide and HNTs on the gas permeation of TFNs. This allows us to provide an interfacial design strategy to fabricate high-performance gas separation membranes. Pure gas permeations conducted on the TFNs at the feed gas pressure of 10 bar showed that CO2 permeance and CO2/N2 and CO2/CH4 selectivities were increased by 145%, 130%, and 108%, respectively, after addition of 0.05 w/v% of sulfonated HNTs. The experimental gas permeations through all TFNs/HNTs, except TFNs/SFHNTs, agree well with predictions of a recently developed model, which suggests the importance of considering the neglected role of CO2 interactions with the HNT/polyamide interface in the model. These results unambiguously proved that designing the interfacial layer thickness in the nanotube-containing membranes is an effective approach to tuning the gas separation properties. The results show that the dispersion of HNTs in the polyamide top layer and the experimental CO2/gas selectivity was increased with increasing interfacial thickness, aint, upon surface modification. Moreover, it is quantitatively demonstrated that the thickness of the interfacial layer between the filler and polymer matrix is a function of gas pressure applied on the membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call