Abstract

Recently, transition metal oxides (TMOs) mixed with carbon materials have attracted attention as lithium-ion battery (LIB) anode materials. However, the aggregation issue in TMOs hinders the development of an ideal encapsulation structure with carbon materials. In this paper, we report graphene reinforced MnO nanowires with enhanced electrochemical performance as an anode in LIB. The graphene nanosheets (GNs)/MnO feature was confirmed by transmission electron microscopy, X-ray diffraction, Raman scattering, and X-ray photoelectron spectroscopy. The GNs/MnO nanowires delivered a highly stable discharge capacity of ∼815 mAh g(-1) at a current density of 100 mA g(-1) after 200 cycles, which is 1.5 times higher than that of pure MnO nanowires. This GNs/MnO structure with a specific capacity of ∼995 mAh g(-1) at a current density of 50 mA g(-1) also exhibited excellent Li storage properties. The superior cycling and high rate capability were attributed to the intimate incorporation between the MnO and GNs. The structure of the GNs/MnO nanowires effectively accommodated the volume change of the MnO nanowires and prevented structure collapse during cycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.