Abstract

It was recently discovered that some redox proteins can thermodynamically and spatially split two incoming electrons towards different pathways, resulting in the one-electron reduction of two different substrates, featuring reduction potential respectively higher and lower than the parent reductant. This energy conversion process, referred to as electron bifurcation, is relevant not only from a biochemical perspective, but also for the ground-breaking applications that electron-bifurcating molecular devices could have in the field of energy conversion. Natural electron-bifurcating systems contain a two-electron redox centre featuring potential inversion (PI), i. e. with second reduction easier than the first. With the aim of revealing key factors to tailor the span between first and second redox potentials, we performed a systematic density functional study of a 26-molecule set of models with the general formula Fe2 (μ-PR2 )2 (L)6 . It turned out that specific features such as i) a Fe-Fe antibonding character of the LUMO, ii) presence of electron-donor groups and iii) low steric congestion in the Fe's coordination sphere, are key ingredients for PI. In particular, the synergic effects of i)-iii) can lead to a span between first and second redox potentials larger than 700 mV. More generally, the "molecular recipes" herein described are expected to inspire the synthesis of Fe2 P2 systems with tailored PI, of primary relevance to the design of electron-bifurcating molecular devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.