Abstract

Electrochemical synthesis of hydrogen peroxide is significant in energy systems, and many efforts have been made to develop highly selective and active carbon-based catalysts. However, it is still a challenge to control the local and density of active sites in carbons precisely. Herein, we demonstrate a novel tactic to construct catalysts with controllable density and location of active sites and well-defined active ability by edge-defect engineering of covalent organic networks (CONs). The optimized catalyst with dangling carbonyl group displays notable activity in catalyzing oxygen reduction reaction with a 2e– pathway, and a selectivity of above 99 %, with a faradaic efficiency of 93 %. Density functional theory calculations further reveal that the carbons next to carbonyl group on the edges enhance the binding ability of OOH*, which contributes to the high activity and selectivity. This work provides a general insight of designing H2O2 electrosynthesis catalysts through regulating the edge-defective properties of CONs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call