Abstract

The hepatitis C virus (HCV) non-structural protein 3 (NS3) is a multifunctional enzyme with protease and helicase activities. It is essential for HCV proliferation and is therefore a target for anti-HCV drugs. Previously, we obtained RNA aptamers that inhibit either the protease or helicase activity of NS3. During the present study, these aptamers were used to create advanced dual-functional (ADD) aptamers that were potentially more effective inhibitors of NS3 activity. The structural domain of the helicase aptamer, #5Delta, was conjugated via an oligo(U) tract to the 3'-end of the dual functional aptamer NEO-III-14U or the protease aptamer G9-II. The spacer length was optimized to obtain two ADD aptamers, NEO-35-s41 and G925-s50; both were more effective inhibitors of NS3 protease/helicase activity in vitro, especially the helicase, with a four- to five-fold increase in inhibition compared with #5 and NEO-III-14U. Furthermore, G925-s50 effectively inhibited NS3 protease activity in living cells and HCV replication in vitro. Overall, we have demonstrated rational RNA aptamer design based on features of both aptamer and target molecules, as well as successfully combining aptamer function and increasing NS3 inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.