Abstract

It is an easy task to simulate the spectrum properties for the organic dyes applied in dye-sensitized solar cells (DSSCs) if the suitable method is chosen. However, it is still difficult to quantitatively determine the overall performance for them. In this work, the short-circuit photocurrent density (JSC) and open circuit photovoltage (VOC) are quantitatively calculated by combination of the density functional theory and first principle for DSSCs based on four different organic dyes, 2-((4'-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)biphenyl-4-yl)methylene)but-3-ynoic acid (1), 2-((5-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)phenyl)thiophen-2-yl)methylene)but-3-ynoic acid (2), 3-(7-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)-4H-cyclopenta[2,1-b:3,4-b']-dithiophene)-2-cyanoacrylic acid (3), and 3-(7-(4-((4-(bis(4-methoxyphenyl)amino)phenyl)diazenyl)phenyl)-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-cyanoacrylic acid (4), in which the triarylamine is donor and the cyanoacrylic acid is acceptor along with variable π group. The 3 and 4 are new theoretically designed organic dyes on the basis of 1 and 2 with different electron-rich group as π group. Both JSC and VOC of 3 and 4 are improved as compared with those of 1 and 2, which breaks the normal "trade-off" rule. As a result, the power conversion efficiency (PCE) of 3 and 4 is improved, especially for 3. The aggregation effect is also considered to evaluate the overall performance, which is favorable to further enhance the reliability of theoretical design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call