Abstract

The high catalytic activity of Cu-based nanozymes mainly depends on the efficient Fenton-like reaction of Cu+/ H2O2, but Cu+ cannot exist stably. Trying to find a material that can stably support Cu+ while promoting the electron cycle of Cu2+/Cu+ still faces serious challenges. C60 is expected to be an ideal candidate to solve this problem due to its unique structure and rich physicochemical properties. Here, we designed and synthesized a C60-doped Cu+-based nanozyme (termed as C60-Cu-Bpy) by loading high catalytic active site Cu+ onto C60 and coordinating with 2,2'-bipyridine (Bpy). The single crystal diffraction analysis and a series of auxiliary characterization technologies were used to demonstrate the successful preparation of C60-Cu-Bpy. Significantly, the C60-Cu-Bpy exhibited superior peroxidase-like activity during the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Then, the catalytic mechanism of C60-Cu-Bpy as peroxidase was elucidated in detail, mainly benefiting from the dual function of C60. On the one hand, C60 acted as a carrier to directly support Cu+, which has the ability to efficiently decompose H2O2 to produce reactive oxygen species. The other was that C60 acted as an electron buffer, contributing to promoting the Cu2+/Cu+ cycle to facilitate the reaction. Furthermore, a colorimetric sensor for the quantitative analysis of bleomycin was established based on the principle of bleomycin specific inhibition of C60-Cu-Bpy peroxidase-like activity, with satisfactory results in practical samples. This study provides a new strategy for the direct synthesis of Cu+-based nanozymes with high catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.