Abstract
Indigoids have received much attention as the candidates of sustainable ambipolar organic semiconductor. However, the low charge carrier mobilities extremely limit their practical applications. Therefore, in-depth understanding of their electronic-structure properties and rational molecular modifications are urgently required. Here, we propose a promising strategy to design ambipolar organic semiconductors based on indigo fragments. Moreover, we predicted the organic crystal structures by evolutionary algorithm combined with DFT-D method. Charge transport properties have been significantly improved for the designed molecules, such as narrower energy gaps, higher electron affinity, larger transfer integrals as well as much smaller reorganization energies for hole and electron. Thusly, remarkable ambipolar charge transport behavior has been predicted, for example, the charge carrier mobilities are up to μh/μe=7.71/5.42cm2V−1s−1 for NN-indigo-6,6′-2CN and μh/μe=5.15/2.13cm2V−1s−1 for C9-NN-indigo-6,6′-2CN respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.