Abstract

Lipid nanoparticles (LNPs) play a crucial role in delivering messenger RNA (mRNA) therapeutics for clinical applications, including COVID-19 mRNA vaccines. While mRNA can be chemically modified to become immune-silent and increase protein expression, LNPs can still trigger innate immune responses and cause inflammation-related adverse effects. Inflammation can in turn suppress mRNA translation and reduce the therapeutic effect. Dexamethasone (Dex) is a widely used anti-inflammatory corticosteroid medication that is structurally similar to cholesterol, a key component of LNPs. Here, we developed LNP formulations with anti-inflammatory properties by partially substituting cholesterol with Dex as a means to reduce inflammation. We demonstrated that Dex-incorporated LNPs effectively abrogated the induction of tumor necrosis factor alpha (TNF-ɑ) in vitro and significantly reduced its expression in vivo. Reduction of inflammation using this strategy improved in vivo mRNA expression in mice by 1.5-fold. Thus, we envision that our Dex-incorporated LNPs could potentially be used to broadly to reduce the inflammatory responses of LNPs and enhance protein expression of a range of mRNA therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call