Abstract
An alkoxy-substituted 1,3-indanedione-based chemodosimeter 1 with an aggregation-induced emission (AIE) characteristic was rationally designed and synthesized for the ultrasensitive and selective sensing of cyanide in a wide pH range of 3.0–12.0. The nucleophilic addition of cyanide to the β-conjugated carbon of the 1,3-indanedione group obstructs intramolecular charge transfer (ICT) and causes a significant change in the absorption and fluorescence spectra, enabling colorimetric and ratiometric fluorescent detection of cyanide in a 90% aqueous solution. The cyanide-sensing mechanism is supported by single-crystal X-ray diffraction analysis, time-dependent density functional theory (TD-DFT) calculations, and 1H NMR titration experiments. Sensor 1 exhibits strong yellow fluorescence in the solid state due to the AIE effect, and the paper probes containing 1 can be conveniently used to sense cyanide by the naked eye. Furthermore, chemodosimeter 1 was successfully used for sensing cyanide in real environmental water samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.