Abstract

Carbon monoxide (CO) is one of the most important gaseous signal molecules in biological systems. However, the investigation of the functions of CO in living organisms is restricted by the lack of functional molecular tools. To address this critical challenge, we present herein the rational design, synthesis, and in vivo imaging studies of a powerful two-photon excited near-infrared fluorescent probe (1-Ac) for endogenous CO monitoring. The advantageous features of the new probe include high stability, low background fluorescence, large fluorescence enhancement, high sensitivity, and two-photon excitation with emission in the near-infrared region. Significantly, these merits of the probe enable the tracking of endogenous CO in zebrafish embryos and mouse tissues for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.