Abstract
Rational design and fabrication of small interfering RNA (siRNA) delivery system with simple production scheme, specific targeting capability, responsiveness to endogenous stimuli and potential multi-functionalities remains technically challenging. Herein, we screen and design a virus-mimicking polysaccharide nanocomplex that shows specific gene delivery capability in a selective subset of leukocytes. A virus-inspired poly (alkyl methacrylate-co-methacrylic acid) fragment was conjugated on barley β-glucans (EEPG) to endow the nanocomplex with pH-dependent endosomal membrane destabilization capabilities, as confirmed both biologically and computationally. siRNA loaded EEPG nanocomplex is feasibly fabricated in a single-step manner, which exhibit efficient gene silencing efficacy towards Dectin-1+ monocytes/macrophages. The inherent targeting affinity and feasible gene silencing potency of EEPG nanocomplex are investigated in three independent murine inflammation models, including myocardial infarction, lung fibrosis and acute liver damage. Significant enhanced accumulation level of EEPG nanocomplex is observed in cardiac lesion site, indicating its exclusive targeting capability for ischemic heart diseases. As a proof of concept, siTGF-β based gene therapy is confirmed in murine model with heart fibrosis. Overall, our findings suggest the designed EEPG nanocomplex is favorable for siRNA delivery, which might have translational potential as a versatile platform in inflammation-related diseases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.