Abstract

A novel turn-on fluorescent probe with barbituric acid as a unique recognition group has been rationally designed and synthesized using a facile method for detecting hydrazine. The 5-((7-(dimethylamino)-4,5-dihydronaphtho [1,2-b] thiophen-2-yl)methylene)pyrimidine-2,4,6 (1H,3H,5H)-trione (DPT) probe displays a large emission signal ratio variation (more than a 40-fold enhancement) in the presence of hydrazine under neutral conditions. Interestingly, a novel recognition mechanism based on a hydrazine-triggered addition-cyclisation-retro aldol was proposed and confirmed. Additionally, the DPT probe exhibits a low detection limit (5 × 10-8 M), applicable to the physiological pH range (3-12), a broad linear response range for hydrazine concentrations between 0 and 34 μM and a large Stokes shift (147 nm) for hydrazine detection in aqueous solution. Moreover, the DPT probe was successfully implemented for hydrazine imaging in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.