Abstract

In this work we lay out design guidelines for catalytically more efficient organic photocathodes achieving stable hydrogen production in neutral pH. We propose an organic photocathode architecture employing a NiO hole selective layer, a PCDTBT:PCBM bulk heterojunction, a compact TiO2 electron selective contact and a RuO2 nanoparticle catalyst. The role of each layer is discussed in terms of durability and function. With this strategically designed organic photocathode we obtain stable photocurrent densities for over 5 h and discuss routes for further performance improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.