Abstract

The rational design of the electrode–electrolyte interface plays a crucial role in expediting the oxygen reduction reaction (ORR) kinetics of intermediate-temperature solid oxide fuel cells (IT-SOFCs). We employed metallic functional layers because of their high electrical conductivities and catalytic activities with respect to ORR kinetics. Using electrohydrodynamic (EHD) jet printing, we printed a metallic grid structure at the interface of Sm0.5Sr0.5CoO3−δ (SSC) and Gd0.1Ce0.9O2−δ (GDC) with Al, Ni, and Ag to systematically quantify the effects of the electrical conductivity and catalytic activity on ORR kinetics. Substantial improvements in interfacial properties were achieved with the metallic functional layers, manifested by reducing the polarization resistance to 12.5% of the bare SSC cathode. I–V characterization, electrochemical impedance spectroscopy (EIS) measurements, and distributed relaxation times (DRT) based on impedance fitting enabled the quantitative deconvolution and revealed that the ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call