Abstract

Liver cancer is a kind of high mortality cancer due to the difficulty of early diagnosis. And according to the reports, the concentration of reactive oxygen species (ROS) was higher in cancer cells than normal cells. Therefore, developing an effective fluorescent probe for hepatoma-selective imaging of hypochlorous acid (HOCl) which is one of the vital ROS is of great importance for understanding the role of HOCl in liver cancer pathogenesis. However, the cell-selective fluorescent probe still remains a difficult task among current reports. Herein, a galactose-appended naphthalimide (Gal-NPA) with p-aminophenylether as a new receptor and galactose moiety as hepatoma targeting unit was synthesized and employed to detect endogenous HOCl in living HepG2 cells. This probe was proved to possess good water solubility and could respond specifically to HOCl. In addition, probe Gal-NPA could completely react to HOCl within 3 s meanwhile accompanied by tremendous fluorescence enhancement. The quantitative linear range between fluorescence intensities and the HOCl concentrations was 0 to 1 μM (detection limit = 0.46 nM). More importantly, fluorescence confocal imaging experiments showed that probe Gal-NPA could discriminate hepatoma cells over other cancer cells and simultaneously trace endogenous HOCl levels in living HepG2 cells. And we thus anticipate that probe Gal-NPA has the potential application for revealing the functions of HOCl in hepatoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.