Abstract
In recent years, fms-like tyrosine kinase 3 (FLT3) was confirmed as an exciting target for treatment of AML. However, resistance to FLT3 inhibitors caused by acquired point mutations in tyrosine kinase domain (TKD) have limited their sustained efficacious. Thus, there remains an unmet need to develop high-efficacy FLT3 inhibitors against both FLT3 internal tandem duplication (ITD) and FLT3 (TKD) mutations. Herein, we describe the discovery of compound LT-540-717 (32), a potent FLT3 inhibitor (IC50: 0.62 nM), starting from FN-1501. Compound 32 exhibited highly inhibitory activity against several acquired FLT3 mutations including FLT3 (ITD, D835V), FLT3 (ITD, F691L), FLT3 (D835Y) and FLT3 (D835V). Additionally, 32 displayed potent antiproliferative activity against FLT3-mutation driven BaF3 and AML cells. Oral administration of 32 (25 mg/kg, QD) significantly prohibited tumor growth (tumor-inhibition rate is 94.18%), and no obvious side effect was observed even when increasing dose to 50 mg/kg (tumor-inhibition rate is 93.98%). Furthermore, 32 showed an acceptable bioavailability (F = 33.3% in rat and 72.7% in beagles), a suitable half-life time (T1/2 = 3.5 h in rat and T1/2 = 11.1 h in beagles), and a satisfactory metabolic stability. In summary, these results show the therapeutic potential of 32 to become a new anti-AML drug, especially for AML harboring dual FLT3 (ITD, TKD) mutations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.