Abstract

Cold-set interpenetrating polymer network gels as riboflavin (RF) delivery vehicles based on wheat bran arabinoxylans (AX) and pea protein isolate (PPI) were developed via enzymatic-crosslinking. The impact of AX concentrations on the physicochemical property, in vitro digestion property and microstructure of IPN gels was explored. Increased concentrations of AX enhanced the viscoelasticity of IPN gels and resulted in a more compact microstructure. However, at a concentration of 5.0 % (w/v), the faster and stronger crosslinking of AX molecules caused separate network gel between PPI and AX. The IPN gel improved the encapsulation efficiency and release property of embedded RF as compared to PPI gel. SEM results showed that IPN gel maintained a complete network structure after gastric digestion. Particularly, the IPN gel with 1.0 % AX exhibited a homogeneous and complete network structure even after intestinal digestion, which explained the reason for the highest encapsulation efficiency and lowest release ratios of RF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.