Abstract

Over the past decades, there has been extensive study on the design of porous bioceramic scaffolds with controlled bioactivity and biodegradation in bone tissue repair. A variety of suggestive models and concepts have been proposed with regard to the role of microstructure and composition of biomaterials which affect new bone tissue growth. However, it is a challenge to fabricate functional scaffolds with the desired physiological properties and osteogenic potentials that is comparable to the bone's natural healing time scale. We demonstrate a one-step versatile fabrication of a single-phase and homogenously mixed bioactive load-bearing scaffolds (Sr-CS, CaSiO3/Ca2SiO4, and CaP) with superior biological properties in a critical size bone defect (Ø ~ 6.0 × 8.0mm). In vivo study revealed the CaSiO3/Ca2SiO4 scaffold had the best amount of new bone growth and osteogenic repair. The Sr-CS exhibited an adequate pore network for rapid inorganic exchange and moderate mechanical stability; however, the CaSiO3/Ca2SiO4 saw over-fast resorption and mass loss compared to the Sr-CS and CaP. On the other hand, the CaP scaffold saw mechanically outstanding elastroplastine and stability but had limited biodegradation of its constructs which retarded new cancellous bone growth. The CaSiO3/Ca2SiO4 group saw superior acceleration and formation of mineralized new bone tissues in the defect. Moreover, the CaSiO3/Ca2SiO4 showed appreciable decay of the biomaterials beneficial for osteogenic cell activity. The dramatic stimulation of bone repair and angiogenesis with the CaSiO3/Ca2SiO4 suggests a promising application of this novel bioactive scaffold in the repair of skeletal defects. Systemic representation of the fabricated microspheres with in vivo and in vitro study analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call