Abstract
The selective aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid (FDCA, a potential renewable substitution of fossil-based terephthalic acid to produce polyethylene 2,5-furandicarboxylate plastic) is an appealing transformation for constructing eco-friendly and sustainable chemical processes. Au supported catalysts have showed encouraging performances for this well-received conversion, whose catalytic behavior was greatly affected by the adopted support derived from the existence of metal-support interactions. Herein, a series of Mg-Beta zeolites were hydrothermally synthesized via developed structural reconstruction, which were employed as basic supports for Au catalysts to construct bifunctional catalysts. The relationship between structure (Au particle size, basicity within zeolites and Auδ+ contents) and FDCA yield was concretely established. The conclusion was made that the utilization of Mg-Beta zeolites with strong basicity as the support could not only improve the FDCA yield but also decrease the amount of additional base. Furthermore, the possible reaction mechanism was also proposed via tracking time-dependent variations of corresponding organics and controlled experiment. This work provides some guidance for rationally designing multifunctional catalysts in the view of integrating metal catalysts with metallosilicate zeolites, which was beneficial to the catalytic upgrading of organic compounds with multiple functional groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.